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The Finite Memory Prediction of Covariance Stationmary
Time Series
by H.J. Newton and Marcello Pagano

Institute of Statistics, Texas A & M University
and

Harvard University and Sidney Farber Cancer Institute

Summary

An algorithm is presented for conveniently calculating h step ahead
minimum mean square linear predictors and prediction variances given a
finite number of observations from a covariance stationary time series Y.
It is shown that elements of the modified Cholesky decomposition of the
covariance matrix of observations play the role in finite memory pre-
diction that the coefficients in the infinite order moving average repre-
sentation of Y play in infinite memory prediction. The algorithm is
applied to autoregressive-moving average time series where further sim-
plifications are shown to occur. A numerical example illustrating the

basic points of the general algorithm is presented.

Some key words: Covariance stationary time series: minimum mean
square linear prediction; modified Cholesky decomposition

algorithm ; autoregressive-moving average time series.

1. Introduction

As pointed out by Whittle (1963, p.47), the calculations required to
find finite memory nredictors for covariance stationary time series are
made difficult by the need to calculate the inverse of the T x T covariance

matrix of the observations.




Thus many authors (see Box and Jenkins (1970, p. 126) have proposed
using approximate infinite memory predictors rather than finding the
exact finite memory predictors.

Pagano (1976) has given an algorithm for finite memory prediction
of a pure moving average process which reduces much of the calculation
in the general algorithm. Ali (1977) uses a well known result to reduce
inverting the T x T matrix to the successive inversion of smaller matrices.

The purpose of this paper is to propose a general algorithm for pre-
diction of covariance stationary time series which capitalizes on the
special structure of the modified Cholesky decomposition of a symmetric
Toeplitz covariance matrix. Section 2 contains the algorithm as theorem 1
which also shows the analogy of the algorithm with infinite memory pre-
diction. In section 3 theorem 2 presents the results of applying theorem 1
to autoregressive-moving average processes. Finally a numerical example

is presented in section 4 illustrating theorem 1.

2. Finite Memory, Horizon h, Minimum Mean Square Linear Prediction of

Covariance Stationary Time Series.

Consider a zero mean covariance stationary time series {Y(t), t=0,+1,...

with autocovariance function R(v) = E(Y(t)Y(t+v)). Then given observations
Y(1), ..., Y(T), the horizon h, memory T, minimum mean square error linear
predictor Y(T+h|T) of Y(T+h) is given by that linear combination of
Y(1), ..., Y(T) that minimizes E {Y(T+h) - Y(T+h|T)}2.

Thus

T
Y(THI[T) = | Ay, (§) Y(T+1-))
=1

T
where AT,h = (AT’h(l), vees XT’h(T)) satisfies

}
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I A =r

T Aron where r. . = (R(h), ..., R(h+T-1))T

~T,h ° ~T,h
and FT = TOEPL (R(0), ..., R(T-1)), i.e. FT is the T x T symmetric
Toeplitz matrix having (j,k) element R(|j-k]|) .

Suppose that Y is purely nondeterministic, i.e.

-T

2 ki
o_ = 2 texp {% f log f(m)dm} > 0 where f is the spectral density

function of Y. Then Y(t) can be represented as the limit in mean square

of an infinite order moving average process, i.e.

L

y(®) = § 8 (k) e(t-k) (1)
k=0

where €(t) is the infinite memory horizon one error in predicting Y(t)

. 2 . .
and E(e(T)e(T-j)) = 6j o, for all integer T and j, where Gj is the Kronecker
delta. Also the horizon h, minimum mean square error linear infinite

memory predictor Y(T+h|T, T-1, ...) and prediction variance 02

T.h o 2T
given by
Y(T+ (T, T-1, ...) = ] 8_(K)e(T+h—k) , (2)
k’n
h-1
o% hoo = o: ) Bi (k) . (3)
s ity k'—'o

The process Y being purely nondeterministic also means that its auto-

covariance function is positive definite. Thus for all T we can form the e
modified Cholesky decomposition (Wilkinson (1965)) FT = LTDTL$ of FT where __.

LT is a T x T unit lower triangular matrix and DT is a T x T diagonal

s

matrix. An important property of LT and DT is that they are nested for
increasing T, i.e.

o aackts




Thus the (j,k)th element of L, will be referred to as ij.

The following theorem shows the role played by LT and DT in finite

memory prediction.

Theorem 1

Let Y be a purely nondeterministic covariance stationary time series

with covariance function R. Let FT = LTDTLg be the modified Cholesky

decomposition of the covariance matrix of g: = (Y(1), ..., Y(T)). Define

T
er = (e(l), ..., e(T)) by Loep = XT' Then
T+h-1
a) Y(T+h|T) = } Lish, Tk 1400
k=h
h-1
2 2 2
= —Y =
b) oy, = E (¥(T+h) (T+h| T} kZO Lreh, Tehok T+h-k
) i) lim L . . =8_(§
T—p T,T-3
2
i1) 1lim dT =a_
T—t

Proof of Theorem

a) Defining the T x T permutation matrix PT to be a matrix of zeros

T
with ones on the main reverse diagonal, we have Y(T+h|T) = }T h PT XT
’

where T, A since premultiplication (postmultiplication) by P

T 2T,h - IT,h

T -1
reverses row (column) order of a matrix. Thus Y(T+h|T) = I P Y
T,h T T -T
T -1 T -1 . 2 _
Tron PrTr PrPr e~ epn Tr Y vReTe epp % Py Iy Since Pp =g

- -1
and since for the symmetric Toeplitz matrix rTl we have PTPTl PT = FT .

s A

PN UWS S PP ST NN




T _-T -1 -1, T _-T -1
Thus Y(T+h|T) = eT,h LT DT LT YT ET,h LT DT er * To show that

this is the result in (a) we note 1) 9: h= (R(T+h-1), ..., R(h)) is the
»
-1

~-T
T+h without its last h elements, 2) PTLT DT
-T . -1

and 3) because of the nesting of the LT and DT’ LT DT is the T x T prin-

T ~1 -1

cipal minor of the upper triangular matrix LT+h DT+h = rT+h LT+h .

last row of T = LT for all T,

B T -1 ]
= (Cpgpy Trgn Pran)ran,k =

T -T . ~1
Thus (QT,h L. D

-1
T T )k )

1-"I'+h I‘T+-h LT+h T+h,k

= LT+h,k , proving (a).
T -1
T,h ‘T IT,h

T _-T ~-1_-1 _ T T _ T -T 5-1
“p Ly Op Ly Ppp T RO - Ly Dp Lpy where Ly = epn br Dp

To prove (b), note that o? = R(0)

T, - RO -T

which as above is the row vector (L ) . Also R(0)

T+h,1° °°°° UT+h,T
T+h

2
= Z L
T+h, T+ T L

! ah % d,, thus proving (b).
ik &

= Tomn, 40 = Copen Pran Lyan)

To prove (c) we first note that multiplying both sides of (1) for

t = T by €(T~-j) and taking expectations gives

Bw(j)c:

[}

E(Y(T)e(T-3))

We next note that

]
[
[=%
™

E(e(T)e(T-3)) 5 97

T
EGYMe(T-1)) = | Ly Ee®e(T-1) = L

do._.
k=1 T,T-3 T-j

and that e(1) = Y(1), e(t) = Y(t) -~ Y(t]e-1, ..., 1), t =2, ..., T, where
the notation Y(tit-l, ..., 1) makes explicit which Y's are used in pre-
dicting Y(t). Then by the stationarity of Y we have that E(¥(T)e(T-j))

= E(U(T) (Y(T-j) ~ Y(T-j|T-3-1, ..., D]) = E(Y(O) [Y(-1)-¥(-3]~3-1,...,1-T)])

which by a standard martingale convergence argument converges to

. .._“,w_";:‘—“j'




E(Y(0)c(-1)) = Bm(j)oi . A similar argument shows dT — c: thus
proving (c).

Thus comparing (a) with (2) and (b) with (3), it is clear that the
elements of LT and DT are playing the role in finite memory prediction
of o: and Bm(-) in the infinite memor- case, while (c) makes explicit
the connection. In the next section we describe how this algorithm can

be simplified for an autoregressive-moving average process.

3. Application to Autoregressive-moving Average Processes.
The univariate autoregressive-moving average process {Y(t), t=0,+1, ...}

of order (p,q) is defined by

p q
Y oa(Y¥(e-1) = | BMe(t-k) , t =0, +1, ...
=0

] k=0
2
where a(0) = B(0) =1, and E(e(t)) =0, E(es(t)e(t+v)) = évo .
s j
We assume that the zeros of the complex polynomial g(z) = z a(j)z
j=0

are all greater than one in modulus so that Y does indeed have an infinite

order moving average representation and that (defining RY(V) = E(Y(£)Y(t+v))

P
jZo a(3) RY(j—v) =0, v>q.

T
Then given a realization Yo = Y@, ..., Y(T)) from Y(*) we define
the following quantities:

i) = TOEPL (RZ(O), ooy RZ(T—l) where 2(-) is an autoregressive

Tz,1
process of order p with coefficients a(l), ..., a(p) . Thus 2(-) is
referred to as the autoregressive part of Y.

T ~ T
i1) X = x(1), ..., X(T))" = VZ,T Yo where FZ,T = LZ,TDZ,TLZ,T and

-1
v, = )
7.1

Z,T




Then it is well known that the jth row of VZ T is given by
T _ r T s A
Yj = (l’ QT_l) J = 1 Il
k]
. T _ a
J (aj_l(J_l), e ey aj_l(l), 1, QT"j) 'y j = 2, veey p

T
\(9§_P_1a(p)’ LR ] G(l), 1’ 0 ) ’ j = p+1, ve ey T

o
k

where ) ak(l) Rz(l—v) =0, v=1, ..., k<p. 1
£=0

Thus there are only p(p+l)/2 distinct elements of V (other than

z,T

0 and 1) and a,(k) , 1 <k < j <p are easily obtained from a(l), ..., a(p)

i
by performing Durbin's recursive algorithm (1960) for decreasing j.

T T
i = X = = -
iii) FX,T E(§&~T) VZ,T FY,T vZ,T where FY,T TOEPL(RY(O),...,RY(T 1)).

P q
Since for t > p , X(t) = | a(j)¥(e-j) = [ B(k)e(t-k) , we have for
j:‘.O k=0

B2 By )y = Ry(l3KD
where
, 9=Vl
R = o T  BGBG+v]) , Iv] <q
k=0
0 s 'Vl >q .

Thus FX T is symmetric band Toeplitz in its last T-p rows and columns
T

while 1its X rincipal minor is given by V T v . Thus
p PP p 4 y Z,p 'Y,p 'Z,p

is almost the T x T covariance matrix of a pure moving average process.
T
iv) rX,T LX,T DX,T LX,T . Since (T )

rX,T

= 0 for|j-k|> q ,

X, T j,k

then L = 0 also for j~k > q . Since L is nested for increasing
X,3,k X

»T




for any T > j,k as L

T we refer to the (j,k)th element of Ly

T X, 5,k °

v) The vector er = (e(l), ..., e(T))T by LX,T?T = §T , 1.e.
max (j-1,q)
e(1) = X(1) , while e(j) = X(3) - | Ly, jox €G30
k=1 » 3,37k

Since VZ T and LX are nested for increasing T then so are ¥T and

’ 9T

T _ T T _ (T
ers i.e. ¥T+1 = (gT, X(T+1)§, ey = (ST’ e(T+l)>.

With these quantities defined, the algorithm is contained in the

following theorem:

Theorem 2:

P
a)  Y(T+h[T) = X(T+h{T) - | a(§) Y(T+h-j|T)

j=1
where ( i
q
i) X(T+h|T) = Ly, T+h, Tehok (THK) 5 b =1, ..., q
‘ k'—'h
L 0 h>gq

11) Y(T+h-3|T) = y(T+h-j) if j > h

b) oi p = E{(T+) - Y(T+h|T)}2
bl
- hil ol .2 d
Lo JT+h UX,T+h) T+h, T+Hh-k “T+h~k
c) 1) LX,T,T—k—’ﬁ(k) , k=1, ..., qas T ==
-1
1) (5l Ly Pop = 8,00 as T —
1i1) Let v(0) =~ 1, Y (1), Y (2), ... be the coefficients of the

infinite order moving average representation of the auto-

regressive part of Y. Then
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v . e, =Y® , k=0,1, ..., j, i2>0.
Z ,p+j,pHi-k v . 1=

P

-1 T a()vl

v =~ . » k=1, ..., p-1
Z,ptj . 3 2= p+J_'erk P

iv)

Proof

. i vy = y-l -1 ;
Since Ty ;. = TOEPL(Ry(0), ..., Ry(T-1)) = V"p Ty 1V, " |
T

-1 T
»T

= VZ L L V; and the modified Cholesky decomposition
is unique, then (b) and (c,ii) follow immediately from Theorem 1.

. Ux,t Px,1 Mg,

Also, Theorem 1 shows that the elements of the rows of Vz r are con-
* s

verging to the infinite moving average representation of the autore-
gressive part of Y. Thus the rows of LX are converging to the infinite

moving average representation of the moving average part, that is to

B, ..., B(q)

To prove (a), note that since = VZ,TXT , we have XY, T,h
= E Y (TH = . .
(§T (T+h)) VZ,T ey, T,k Also for T+h > p , oXY,T,h
p p
= E(X_ [X(T+h) - +h- = -
p KR = ] () Y= =0y 7y = L aWeyy ¢y s
j=1 j=1
p
- - = E(X
°X.T.h jzl a(3) V; 1 0y g p-j » Where oy oy = E(XX(T+h)). Thus
] = V—1 = V-1 - E a(j)
v,7,u ~ 'z,T ®xy,T,h T 'z,T 2X,T,h 151 %Y, T,h-j
T T .-T -1 T -T T _-T -1
Th f R TH = =
erefore, Y(T+h|T) °v, 1,0 Vz,7 x,1 Px,T €1 = °x,T,nVz,1V%,70%, 10X, 1T
E T T -T -1 T -T -1
- \Y =
“‘1)9Y,T,h-j 2,7 U%,7 P%,7 T = Ox,7.n Ux,T °X,T ©T

- f a’§) Y(T+h-3|T)
i=1

cu e et e el Y e




An argument identical to that used in the proof of Theorem (la) proves

part (i) of (2a). To verify (ii1) we substitute for er and X

T
T T _-T -1 T -1
to obtai LT b - = -
° obtain oy r,h-i Vz,T "x,1 Px,T 81 T Ov,T,h-j 'y,rir T Y(TH-D),
T .
since eY,T,h-j is the (T+h-j)th row of FY,T'

To prove (2c¢iii) we note that comparing coefficients of like powers

o0

of z in the equation 1/ E a(j)zJ = Z y(k)zk gives the following recur-
j=0 =

k=0
k
sion for v: Z a(@)y(k~8) = Gk, k > 0. Thus we need only show
£=0
X -1
ezoa(ﬂ)vz,p+j’p+j_(k_£) = Gk , k=0, ..., j . But the left hand side

of this equation is just the (p+j)th row of times the (p+j-k)th

-1
Vi,T

column of V Finally, (2civ) follows by multiplying the (p+j)th

Z,T°
row of Vi times the kth column of 2;1 for k =1, ..., p-1 .

From Theorem 2 we see that to find Y(T+h|T) and 0% W for h = hys

.» h2 and T = Tl’ cess T2, one essentially needs to calculate

-1
I L , and D .
L,T2+h2 s X,T2+h2 X,T2+h2

q nonzero, nonone elements in a row of LX and that these elements are

converging to the coefficients of the moving average part of Y. Theorem

(2ciii) shows that only the first p-1 elements of rows of Vfl
L,T2+h2

v Theorem (2ci) shows that there are

are not one of v(0), vy(1), ... while (2civ) shows these elements are

easily calculated recursively. Thus the number of elements in V—l
Z,Ty+h,

and L that need to be calculated and stored in a computer program
X,T2+h2

increases linearly with the number of rows needed prior to attaining

convergence. This convergence 1s illustrated in the next section.
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4., A Numerical Example
Consider the autoregressive-moving average process Y of order p = 4

-.3357, of(2) = .0821, o(3) = .1570, a(4) = .2567,

and q = 3 with ofl)

1) = -.6077, B(2) .0831, B(3) = .1903, and 02 = 1. Then the variances

and first 10 autocorrelations of Y, (denoted pY(-)), the autoregressive
part of Y (denoted OZG)), and the moving average part of Y (denoted ow(-)
are given in Table 1, while Table 2 gives the first 10 terms in the in-~

finite order moving average representation of Y, Z, and W.

Table 1. Variances and First 10 Autocorrelations pY('), DZ(-), Dw(°) of
Y, autoregressive part of Y, and moving average part of Y where

Y is the above ARMA (4,3) process.

v py(V) p, (V) o)
1 -.2227 .3806 -.4548
2 -.0749 -.0112 -.0230
3 .0616 -.2897 .1347
4 -.1949° -.4128 0

5 -.0015 -.2107 0

6 .0250 .0115 0

7 .0233 .1603 0

8 .0560 .1919 0

9 .0134 .1036 0
10 -.0102 -.0091 0

Variance 1.1306 1.3891 1.4124
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Table 2. First 10 Terms in Infinite Order Moving Average Representation

of Each of Series in Table 1.

h| ARMA AR part MA part
1 ~.272 .336 -.608
2 ~-.090 .031 .083
3 .025 -.174 .190
4 -.198 -.370 0
5 .015 -.201 0
6 .041 -.018 0
7 .037 .114 0
8 .058 .166 0
9 .006 .101 (]
10 -.019 .007 0

Finally Table 3 illustrates the convergence proved in Theorem 2 in

the above section.

Table 3. The Matrices nglo LX,lO s V;flo s LX,lO .
Vz}lo Lx,10°
1
-.223 1
-.075 ~.252 1
.062 ~.064 -.250 1
~.195 .N19 -.091 -.247 1
-.002 -,205 013 -.090 -.266 1
.025 004 -.206 .013 -,094 -.271 1
.023 .032 .008 -.206 021 -.091 -.270 1
.056 .038 .041 .007 -.200 024 -.090 -.271 1

.013 .062 .042 .041 014 -.199 .025 -.090 -.272 1
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: vzf1o
g
1
.381 1
-.011  .450 1
-.290  .116  .403 1
-.413  -.155  .053  .336 1
-.211  -.389 -.172  .031  .336 1
012 -.252 -.382 -.174  .031  .336 1
.160 -.058 -.226 ~-.370 -.174  .031  .336 1
.92 .102 -.031 -.201 -.370 -.174  .031  .336 1
.104  .178  .112 -.018 -.201 =-.370 -.174  .031  .336 1
Lx,10
1
| -.603 1
g .208  -.702 1
ﬂ 338 .102  -.653 1
? 177 .075 -.583 1
, .180  .075 -.602 1
K .180  .077 -.607 1
.188  .082 -.606 1
4) .189  .083 -.606 1

.190 .083 -.607 1
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